
Numerical studies of variable-range hopping in one-dimensional systems

A. S. Rodin and M. M. Fogler
Department of Physics, University of California–San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

�Received 2 September 2009; published 15 October 2009; corrected 20 October 2009�

Hopping transport in a one-dimensional system is studied numerically. A fast algorithm is devised to find the
lowest-resistance path at arbitrary electric field. Probability distribution functions of individual resistances on
the path and the net resistance are calculated and fitted to compact analytic formulas. Qualitative differences
between statistics of resistance fluctuations in Ohmic and non-Ohmic regimes are elucidated. The results are
compared with prior theoretical and experimental work on the subject.
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I. INTRODUCTION

It is well-known that low-temperature transport in
disordered one-dimensional �1D� structures is distinguished
by large mesoscopic fluctuations. Such fluctuations have
been measured1–5 even in samples of considerable length.
They arise from the interplay of localization and rigid
geometrical constraints on possible current paths. The
total resistance tends to be dominated by a few strong
obstacles—“breaks”—that occur at random due to disorder
in the sample.6–11 This unusual behavior can be contrasted
with a more familiar case of dimensions d�1. There, the
current can go around the breaks, so that the mesoscopic
fluctuations of transport properties are usually small and self-
averaging.

In this paper, we consider 1D systems that are not too
short, so that the coherent tunneling of electrons through
their entire length12,13 is extremely improbable. Instead, elec-
trons traverse each sample via a sequence of many incoher-
ent tunneling acts—the variable-range hopping9 �VRH�. By
studying the VRH transport,14 one aims to extract informa-
tion about the nature of electron localization and disorder in
the system. However, this task is far from trivial. Although
the basic physics of the 1D VRH problem is quite well-
understood, experimental studies of VRH are typically done
in a narrow parameter range where usual theoretical approxi-
mations are still rather crude. Below, we demonstrate that
large corrections appear when the transport properties of a
standard VRH model are calculated numerically, which
means, with fewer approximations.

To deal with large mesoscopic fluctuations, we follow
prior work and compute both the probability distribution
functions10,11,15,16 �PDF� and suitable averages of the trans-
port observables. For example, we study the ensemble-
averaged conductance �G�, which can be measured experi-
mentally by having a large number of 1D wires connected in
parallel.17

Our primary purpose is to investigate non-Ohmic effects,
e.g., the dependence of function �G��F ,T� on the electric
force F=−eE. This regime has been studied much less com-
pared to the Ohmic one. However, recently an analytical
theory of non-Ohmic 1D VRH has been proposed in a work
of one of us.18 Here, we approach the same problem numeri-
cally. We have developed an efficient computer algorithm,
which is able to find the VRH conductance of a given sample

at arbitrary electric field. By choosing a low F the Ohmic
conductance G�0,T� can also be calculated.

Since the Ohmic case has been more widely studied, it
deserves a brief discussion first. In dimensions d�1 the
Ohmic conductance is known to follow the stretched expo-
nential temperature dependence:

G�0,T� = G0 exp�− ��/T��� , �1�

where � is some energy scale, and G0 depends on T at most
algebraically. The exponent �=1 / �d+1� at d�1 signifies the
Mott law. The Efros-Shklovskii law corresponds to �=1 /2.
It applies when the long-range Coulomb interactions are
important.14

In 1D, the Mott and Efros-Shklovskii exponents coincide.
This is because in 1D the 1 /r Coulomb potential is only
marginally long-range to begin with, and then typically also
screened by a nearby metallic gate. The importance of the
remaining interactions is determined by the dimensionless
parameter

� = 1 + �e2g/C� , �2�

which has the physical meaning of the dielectric constant.
Here, C is the capacitance to the gate per unit length of the
wire and g is the average density of states. �Note that � is
related to the Luttinger-liquid parameter19 of a disorder-free
1D system.� In this paper, we study the case of weak inter-
actions, ��1, where, naively, the Mott law may seem to be
a reasonable starting point.

Actually, the 1D Mott law is modified by the aforemen-
tioned mesoscopic fluctuations. Lee9 and Raikh and Ruzin11

showed analytically that at low temperatures the energy scale
� in Eq. �1� is not a constant but a logarithmic function of T.
More importantly, ��T� is determined not only by intrinsic
properties of the system but also by its size. As T increases,
a narrow range of temperature appears where another depen-
dence, ��T��1 /T is realized. Hence, instead of the �=1 /2
Mott law we effectively have a simple activation,6,7 �=1.
Such behavior has been confirmed by numerical
simulations,9,10,15,16,20 so it is considered well established.

Nevertheless, to establish a reference point for our study
of non-Ohmic VRH we examined the Ohmic conductance
carefully by our method. Remarkably, we found that it is
essential to introduce often discarded “subleading” terms in
the analytical expressions. If this is not done, analytical and
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numerical results for G can differ by orders of magnitude.
In the non-Ohmic regime, which is our main subject of

interest, it has been customary21–24 to characterize the field-
dependence of the conductivity by means of the length pa-
rameter Lc:

�G��F,T� = �G��0,T�exp��F�Lc/T� . �3�

In experiment, this law typically describes the first decade of
the conductivity rise. Thereafter, deviations tend to occur.
Indeed, in theory25–27 Lc is expected to be not a constant but
a function of F and T. We will show that in 1D Lc may also
depend on the averaging procedure utilized to obtain �G�.

At large enough F, Eq. �3� eventually becomes a poor
approximation. Theoretically, it should cross over to18

G 	
a

2LR0
exp
−�8T0

Fa
� , �4�

where T0 is defined by

T0 = 1/�ga� , �5�

a is the electron localization length, and R0 is specified in
Sec. III �At such fields mesoscopic conductance fluctuations
are small, and so we denote �G� simply by G.� Our numerical
results are consistent with Eq. �4�. Note that it can be viewed
as the 1D Mott law with the effective temperature28,29

Teff	Fa replacing the ambient temperature T.
Finally, we examine the PDFs of the mesoscopic conduc-

tance fluctuations. Such functions can also be studied experi-
mentally, albeit it requires a substantial time and effort.30,31

We demonstrate that the PDFs are qualitatively different in
the Ohmic and non-Ohmic regimes. Both have asymmetric
long tails. However, the Ohmic PDF is skewed toward the
low conductances, while the non-Ohmic one toward the high
conductances. We explain these differences and show how
they evolve as a function of the applied field F.

The paper is organized as follows. In Sec. II we present
the summary of our results. In Sec. III, we define the model
and present our fast algorithm for computing the resistance at
a given current. In Sec. IV, we obtain analytical fitting for-
mulas for the PDF of individual hops in the Ohmic and non-
Ohmic regimes. We also describe approximate but much
faster “PDF-algorithm” for computing the net resistances.
Section V discusses the differences of two averaging proce-
dures: at given current I and at given electric field F. Finally,
Sec. VI contains discussion and comparison with experi-
ments.

II. MAIN RESULTS

In this section, we provide a short overview of our prin-
cipal results for experimentally measurable transport proper-
ties.

Figure 1 shows the dependence of the average Ohmic
conductivity �G�0,T�� on temperature in an ensemble of
samples of length L=250a. To test the expected crossover
behavior, we fit the low T data points using Eq. �1� with
�=1 /2, corresponding to the 1D Mott law. We fit higher T
using �=1, representing activated transport. In the Mott re-

gime, we find �=8.4T0. For the activated regime we get
�=0.62T0. Note the large difference between these values.
As far as � is concerned, our numerical results are in a good
agreement with the analytical theory of Raikh and Ruzin11

�RR�. In the high-T regime it predicts �=T0 /2. Their low-T
formula reads

G = R0
−1 exp
− ��

T0

T
� , �6�

where � is defined as the solution of the transcendental equa-
tion

� =
2T

T0
ln
��

L

a
� . �7�

Therefore, RR result for Mott’s � is

��T� = 2T0 ln
��
L

a
� . �8�

Strictly speaking, it is not a constant but a slow function of
T. In the range of T where the fit to the Mott law was done,
it is indeed close to 8.4T0. The large difference between the
values of � in the Mott and the activated regime is due to the
“large” logarithm ln��� L /a�.

When the RR formula is plotted alongside our numerical
results, it is seen to exhibit a very similar functional behavior
yet a large difference in the absolute value, see Fig. 1�b�.
Despite the fact that we study exactly the same model, see
details in Sec. III, RR’s predictions differ from our results by
two orders of magnitude. We attribute this discrepancy to the
subleading terms not included in the asymptotic theory of
RR.

Next, we present the PDF PU�U� of the logarithm of the
total resistance U=ln�R /R0� in the Ohmic limit, Fig. 2, for
the same set of wires at temperature T=T0 /75. Our curves
are plotted side-by-side with RR’s formula

PU�U� = �� exp�− �� �U − exp�− �� �U�� , �9�

3 6 9 12 15
10

−4

10
−3

10
−2

10
−1

T
0

/T

〈G
〉R

0

(a)

2 4 6 8 10
10

−12

10
−8

10
−4

10
0

(T
0

/T )1/2

〈G
〉R

0

(b)

FIG. 1. �Color online� Ensemble-averaged Ohmic conductance
�G� as a function of temperature �the curves with fluctuations�: �a�
Relatively high T. The dashed line is the best fit to the simple
exponential law, �=1 and �=0.62T0 in Eq. �1�. �b� A range of low
T. The dashed line is a fit to the 1D Mott law, �=1 /2 and
�=8.4T0 in Eq. �1�. The upper curve is Eq. �6�. The dots are the
Ohmic limit of the upper four traces in Fig. 3.
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�U  U − ��� T0/T� . �10�

Again, we see that while the shapes of the curves are prac-
tically identical, RR’s distribution is centered around a lower
value of U. This is consistent with the difference of the G�T�
curves described above: ignoring the subleading terms re-
sults in a decreased resistance.

Let us now turn to the non-Ohmic regime. Figure 3 illus-
trates the dependence of the ensemble-averaged conductance
as a function of the applied electric field at five different
fixed T. At low fields the conductance strongly depends on T,
as the curves originate at points on the vertical axis which
differ by many orders of magnitude. �Four of these points are
also shown as dots in Fig. 1�b�.� All the traces grow mono-
tonically with F. Equation �3� gives an adequate fit �dotted
lines� in a range of low fields. The corresponding Lc are
presented in Fig. 4. We plot them as a function of both the
temperature and the “Mott value,” uM, defined as

uM  �2T0/T�1/2. �11�

We see that Lc�1.9uMa, which is the average hop length.
This implies that the average conductance is dominated by

rare samples that do not contain large breaks, so that the total
voltage is distributed roughly equally among all the hops. In
contrast, we know that the average resistance is determined
by typical samples where the breaks are present; the entire
voltage is applied to the single most resistive hop, and the
size of the non-Ohmic effect is much larger, see Fig. 5. We
discuss the difference between average conductance and av-
erage resistance in more detail in Sec. VI.

At large F the rise of the conductance becomes less rapid
than exponential and the curves in Fig. 3 tend to converge to
a common T-independent envelope of Eq. �4�, confirming the
analytical predictions of Fogler and Kelley.18 At such high
electric fields F, high-resistance breaks are eliminated not
only from rare samples but from typical ones. This can be
deduced from the fact that averaging of the conductance G
approaches the result of averaging of the resistance R �fol-
lowed by taking the inverse�. As evident from Fig. 5, the two
curves indeed approach each other with increasing field. A
detailed analysis of this crossover in terms of the PDFs is
given in Sec. IV.

This concludes the summary of our main results. In the
next section, we define the model and the method of calcu-
lation by which they have been obtained.
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FIG. 2. �Color online� The PDF of the logarithm of the total
resistance R in the Ohmic limit. The simulations are done for sys-
tem size L=103, localization length a=4, and uM =12.247. The
smooth curve on the right is obtained using the PDF algorithm; the
markers correspond to the shortest-path simulation. The leftmost
curve is Eq. �9�.
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FIG. 3. �Color online� Conductance as a function of a scaled
electric field Fa /T0 �five solid lines on the left�. The simulations are
done for system size L=103 and localization length a=4. The val-
ues of uM =�2T0 /T are indicated next to each curve. The fits to Eq.
�3� used to extract Lc are shown by the dotted lines. The rightmost
curve is Eq. �4�.
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FIG. 4. �Color online� Characteristic length Lc �Eq. �3�� that
determines the non-Ohmic behavior as a function of temperature
�dots�. For comparison, the dashed curve represents the relation
Lc /a=1.9uM, which corresponds to a typical hop length.
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FIG. 5. �Color online� Dependence of the conductance on the
scaled electric field averaged in two different ways. The upper line
is the average conductance, the lower one is the inverse of the
average resistance. Simulation parameters are the same as in Fig. 2.
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III. MODEL

A. VRH resistor network

We model our samples as a network of resistors, as is
customary in the VRH theory.32 To derive the parameters of
this network, we proceed as follows. The phonon-assisted
transfer of electrons from one localized state �LS� i to an-
other j is characterized by the transition rate

�i→j = �0 f i�1 − f j� 	 �N��
� , if �
 � 0,

N���
�� + 1, otherwise,
�

�12�

where f i is the occupation factor of ith LS, N�
� is the Bose-
Einstein distribution, and �
 is the energy difference in the
hop:

�
 = 
 j − 
i, 
i = 
i
0 − e�i. �13�

Here, 
i and 
i
0 are the energy of ith LS with and without the

applied field, respectively, and �i is its electrostatic potential
shift. In a realistic model, the rate prefactor �0 should have
some algebraic dependence on �
, which counteracts the
divergence of N���
�� at �
→0. However, such �
 are vir-
tually never important in the VRH transport. For simplicity,
we treat �0 as a constant.

The net current between the LS i and j is given by

Iij = − e��i→j − � j→i� . �14�

In order to compute Iij, one needs to know the occupation
factors of all LS. They can be found from the conditions of
current conservation �the so-called Master equation�,

�
j

Iij = 0, �15�

supplemented by suitable boundary conditions at the source
and drain electrodes. Unfortunately, these equations are non-
linear and involve an exponentially large spread of the values
of f i. This makes the solution difficult to obtain. It can be
done numerically, using some clever iterative
techniques.26,33,34 However, the rate of convergence is slow.
We proceed in a different direction, which enables us to map
the problem to a resistor network even in the non-Ohmic
regime. As a result, we can achieve practically the same
speed of simulations in the non-Ohmic regime as in the
Ohmic one.

We start by defining the chemical and the electrochemical
potentials as follows:

�i = T ln�f i
−1 − 1�, i = �i − e�i. �16�

The “voltage drop” of every �i , j� link is given by the differ-
ence of electrochemical potentials �=i− j. In turn, the
link resistance is defined by

Rij = �/Iij . �17�

Substituting this into Eq. �14�, one obtains23

I =
2T

eR0
sinh
−

�

2T
�exp
−

2xij

a
�

	exp
−
�
i − i�

2T
−

�
 j −  j�
2T

−
�
i − 
 j�

2T
� , �18�

where xij is the distance between the LS i and j, and
R0=T / �e2�0�.

Let us introduce logarithmic variables

uij = ln
Rij

R0
= uI + ln

�

T
, uI = ln
 T

eR0I
� . �19�

It is easy to see then that if the voltage drop is smaller than T
�Ohmic case�, the expression for uij reduces to the well-
known form14

uij =
2xij

a
+

�
i − �
2T

+
�
 j − �

2T
+

�
i − 
 j�
2T

. �20�

Here, either i or  j can be used for .
To complete the system of equations, we need a formula

for the electrostatic potential �i �Eq. �13��. It is determined
by charges on the source and drain leads, and the perturba-
tion of the electron density inside the wire �given by the
occupation factors f i�. The relative importance of these con-
tributions depends on the exact geometry of the device. We
consider a typical situation where there is a metallic gate
positioned parallel to the wire, with C again denoting the
capacitance to the gate per unit length of the wire. We further
assume that the capacitive coupling to the leads is much
smaller and can be neglected. In this case, we find

��x� = −
en�x�

C
, �21�

where n�x� is the deviation of the local density from equilib-
rium. Neglecting fluctuations in the local density of states
and any correlation effects, we can directly relate n�x� to the
local chemical potential, n�x�=g��x�, which implies

− e�i =
e2g

C
�i = i
1 −

1

�
� , �22�

where � is given by Eq. �2�. In comparison, in previous lit-
erature it was common to approximate �i simply by −Fxi,
i.e., to assume that the electric field in the system is uniform.
Although this may be reasonable for a sample of dimension
d�1 with bulk leads, it is inappropriate for the specified 1D
geometry where the electric field is heavily concentrated at
the breaks.

Substituting Eq. �22� into Eq. �18�, we obtain:

I =
2T

eR0
sinh
−

�

2T
�exp
−

2xij

a
�

	exp
−
�
i

0 − i/��
2T

−
�
 j

0 −  j/��
2T

�
	exp
−

�
i
0 − 
 j

0 + �i −  j��� − 1�/��
2T

� . �23�

In this equation, all self-consistent field effects are conve-
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niently expressed in terms of the effective dielectric constant
�. Actually, in this paper, we focus on the case of weak
electron interaction, so that henceforth, � will be replaced by
unity. Effect of finite-strength interactions, ��1, will be con-
sidered in a separate publication.

To implement the resistor network, we proceed as fol-
lows. We choose the coordinates of the LS, 0�xi�L, to be
the sites of a chain with unit nearest-neighbor spacing. Their
energies 
i

0 are selected randomly. We draw these energies
from the Poisson distribution P
�z�=g exp�−g�z�� and gener-
ate two of them—one above zero and the other below—at
each internal lattice point. For high currents �small uI�, we
sometimes generate additional energies at the same lattice
point, using the same procedure.

The leftmost lattice point is the source electrode. It has
only one LS at the coordinates �0,0�, whereas the right end of
the sample has many sites at the same x-position, equally
spaced along the energy axis, see Fig. 6. This is done in order
to simulate the behavior of a metallic drain electrode where
there are all energies present.

B. Shortest-path algorithm

At this point, we make a crucial approximation, which is,
however, conventional in the VRH theory.14 We will suppose
that there exists a certain path through the network—the op-
timal path—whose conductance is much higher than any
other linear path. We can assume then that all the current
flows along the optimal path without branching. As we show
below, this allows us to devise a fast algorithm for finding
such a path and therefore the net resistance of the sample.

Using Eq. �18� with �=1, we can express the voltage drop
� in terms of i, the bare site energies 
i

0 and 
 j
0, and uI. To

this end, we define axillary variables t and q

t = �
 j
0 − i�/T , �24�

q =
2xij

a
+

�
i
0 − 
 j

0�
2T

+
�
i

0 − i�
2T

+
t

2
− uI. �25�

Only q�0 are physically allowed, which means that there is
a certain maximum current that can flow through the given
link. If so, the voltage drop in question is

�

T
= − ln�1 − eq � if eq � 1 − et, �26�

�

T
= ln�1 + eq−t � otherwise. �27�

One can show that this cumbersome expression is reduced to
the familiar Eq. �20� in the low-current limit, uI→�. Indeed,
in this case, Eq. �26� applies for t�0, while Eq. �27� for t
�0. Note that Eq. �20� is independent of uI, as is appropriate
in the Ohmic regime.

We can use the above equations to find the optimal path
through the sample. This is the path that would require the
lowest voltage �difference in the electrochemical potential
between the ends of the sample� for a given current, i.e., at a
fixed uI. To do so, we use the well-known Dijkstra
algorithm35 to calculate the minimum “cost” of getting from
the source to the drain. Here, the cost is the total voltage.
Similarly the cost ci of getting to site i on the optimal path is

ci = − i. �28�

The algorithm starts by assigning zero cost to the source
�0,0� and infinite cost to all other sites. Thereafter, the span-
ning tree of the lowest-cost sites is grown iteratively. Ini-
tially, the tree consists of only the source site. At each itera-
tion, a site of the lowest cost among those that are still
outside the tree is added to the tree. The costs of sites j
outside the tree are relaxed �updated� according to the rule

cj
�n+1� = min�ci

�n� + �, cj
�n�� . �29�

Here cj
�n� is the cost of site i at nth iteration. The cost incre-

ment � in Eq. �29� is computed using Eqs. �26� and �27�.
The process terminates when any of the LS located on the
drain electrode are reached. In Fig. 6, one can see an ex-
ample of an optimal path found by our algorithm in a mod-
estly non-Ohmic regime.

In the Ohmic VRH problem, the Dijkstra algorithm has
been used in Ref. 15. Here, we are using the Dijkstra algo-
rithm in an unconventional situation where the cost �
=��ci� of a given link is not a constant but a nonlinear
function of the cost of the earlier sites in the tree. A poten-
tially troublesome point is that in the course of iterations we
retain only the lowest cost so far. We effectively assume that
for any i and j

min cj = min �ci + ��ci�� = min ci + ��min ci� . �30�

Let us show that this equation is satisfied, which implies that
our algorithm works correctly at arbitrary current. First of
all, by our earlier assumption the current does not branch,
and so the current through any link of the optimal path must
be exactly I. Second, a sufficient condition for validity of Eq.
�30� is �cj /�ci�0. That is, increasing ci by taking a less
optimal path to the ith site would not help to decrease cj. In
view of Eq. �28�, the last condition can be written as

�

�i
� � 1. �31�

We need to examine the two possible cases represented by
Eqs. �26� and �27�. In the former, we get

0 500 1000
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FIG. 6. �Color online� An example of the optimal path in a
modestly non-Ohmic regime, uI=25. The dots represent localized
states.
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�

�i
� = −

eq

2�1 − eq�
�sgn�
i − i� + 1� � 0 � 1. �32�

In the latter, we obtain

�

�i
� =

eq−t

2�1 + eq−t�
�1 − sgn�
i − i�� � 1. �33�

In both cases, inequality �31� is satisfied, which means that
our algorithm does find the optimal path.

In the course of simulations, the resistance of every link
on the optimal path as well as the net resistance of a sample
are saved for further analysis. Repeating the process over
many disorder realizations, we obtain the PDFs and the av-
erages of desired transport properties, discussed in more de-
tail below.

IV. DISTRIBUTION FUNCTIONS

In this section, we review analytical predictions regarding
the functional form of the PDF of link resistances and com-
pare them with the simulation results. In both Ohmic and
non-Ohmic cases we are able to make the two to agree by
making a few refinements in the analytical formulas and by
adjusting numerical coefficients therein.

A. Ohmic case

We start by discussing the Ohmic case: uI→�. According
to previous theoretical studies, notably Refs. 9–11, the loga-
rithm of the average resistance of a link is on the order of the
Mott value uM. Links with u�uM are exponentially rare;
however, they act as bottlenecks and the total resistance de-
pends on them. In order for such high-resistance links to
exist, the optimal path has to encounter regions in the
energy-position �x-
� space that are empty of LS. Using the
method of optimal fluctuation, RR �Ref. 11� showed that the
leading asymptotic behavior of the PDF of the breaks has the
form

P�u� = −
d

du
exp�− gA�u�� , �34�

where A�u� is the smallest possible area of a break with
given u in the x-
 space. Equation �34� is due to the Poisson
distribution of the LS in the x-
 space. The shape that attains
the minimal area depends on whether the break is Ohmic

�u�uI� or non-Ohmic �u−uI�1�. For the former case, RR
showed that the break is diamond-shaped with the width
ua /2 and the height 2uT, see Fig. 7�a�. This entails the qua-
dratic dependence

gA�u� = �u/uM�2. �35�

Later, taking into account shape fluctuations of the break
along its perimeter, Ruzin42 proposed a refined formula

P�u� = C0 exp�2Bu/uM� 	 gA��u�exp�− gA�u�� . �36�

While C0 is determined essentially by the normalization of
P, analytical calculation of the coefficient B is challenging.
Ruzin gave a rough estimate B��2 /3�0.5. In this study,
we calculate B numerically. Indeed, from the example of the
optimal path shown in Fig. 6, it is clear that the voids around
the long hops hardly ever look like “diamonds” �or “hexa-
gons,” see below�. This means that even though the RR
theory provides the basis for understanding the behavior of
P�u�, numerical simulations are critical in order to calculate
it accurately.

At each L the functional form of the P�u� is expected to
depend only on the dimensional ratio u /uM. By running
simulations at different combinations of a, g, and T, we con-
vinced ourselves that this is indeed correct, for the exception
of very small u where lattice discreteness starts to matter.
Fortunately, such u are irrelevant for the macroscopic trans-
port properties as they do not determine the resistance.
Thereafter we fixed a=4, g=1 /3, and T=0.01, which yields
the characteristic temperature T0=3 /4 and the Mott param-
eter uM =12.247, cf. Eq. �11�. To ensure we are in the Ohmic
regime uI=200�uM was used.

For each L in the set L=100, 200, 400, 500, and 1000, we
generated many realizations of 1D wires, respectively,
20 000, 10 000, 5000, 4000, and 2000. Anticipating the
finite-size effects, these numbers were chosen in order to
have the same total number 2	106 of LS at each L. We
found optimal paths through the samples and created the
PDFs of the link resistances. We fitted such PDFs to Eq. �36�
using B as a single adjustable parameter. The quality of the
fits was rather good, see an example in Fig. 8. Furthermore,
even though Eq. �36� is meant to apply at u�uM, it fits our
numerical results for u�uM as well.
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FIG. 7. �Color online� Geometry of �a� Ohmic �b� Non-Ohmic
break in the energy-position space. The dots represent localized
states.
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FIG. 8. �Color online� Numerical results for P�u� in the Ohmic
regime shown on �a� linear and �b� logarithmic scale. The simula-
tion parameters are the same as in Fig. 2, e.g., uM =12.247 �thin
line�. The small fluctuations are of statistical origin. Equation �36�
with B=0.9 is represented by the smooth thick line.
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Interestingly, we found that B slowly but systematically
increases with L. When plotted as a function of 1 /L, it was
seen to vary linearly, tending to a constant for large L. We
believe that the reason for this finite-size effect is the follow-
ing: due to the source electrode being at zero energy, the
resistance of the first link is typically lower than average. In
shorter samples, where the total number of hops through the
sample Nu is about ten or so �see Eq. �41� below�, it impacts
the PDF. As the samples get longer, Nu increases and this
first hop does not influence the overall PDF any more. To get
the value of coefficient B in the thermodynamic limit, we
used linear extrapolation to L=�. Our final estimate is

B = 0.92 � 0.02, �37�

approximately twice larger than that of Ref. 43.
Two characteristic measures of the width of the distribu-

tion are its mode and its average. For P�u� they are given by,
respectively,

umax =
1

2
�B + �B2 + 2 �uM = �1.30 � 0.02�uM , �38�

�u� = �
0

�

uP�u�du = �1.39 � 0.02�uM . �39�

As expected, both are the order of the Mott parameter uM.
One more important quantity is the average number Nu of
links on the path. It determines the relation between P�u� and
the probability density of breaks per unit length of the wire
��u�:

��u� =
Nu

L
P�u� . �40�

Since the width of each link is not smaller than �a /2�u,
cf. Eq. �18�, Nu can be estimated from below as
�2L /a� / �u��1.4L /auM. According to our simulations, the
actual Nu is approximately twice larger:

Nu = �3.04 � 0.07�
L

uMa
. �41�

Besides RR �Ref. 11� and Ruzin,36 the calculation of P�u�
was previously attempted by Ladieu and Bouchaud.43 They

reported umax and �u� that differ from our Eqs. �38� and �39�
by 30 %–40 %. In fact, we were unable to verify that state-
ment because the main equation of Ref. 43 has no solution.
As written, that equation does not conserve probability. Con-
sequently, we believe that our results constitute the first reli-
able calculation of function P�u�.

B. Non-Ohmic case

Let us now discuss the breaks in the non-Ohmic regime.
Unlike the diamonds of the Ohmic case, the non-Ohmic
breaks are hexagonal, see Ref. 18 and Fig. 7, with area

gA�u� =
w2 + w�

uM
2 , w = uI + ln�1 − e−� � , �42�

� =
�

T
= eu−uI. �43�

The width of the break in the real space is wa /2. Note that
at u�uI we have wa /2�ua /2, which is the width of the
Ohmic break. The combination �T, which is equal to the
electrochemical potential drop across the break, gives the
height of the middle part of the break in the x-
 space.

In order to account for the possible perimeter corrections
to P�u�, we consider the following trial form:

P�u� = C0 exp�2B
w

uM
+ C
 �

uM
�D� 	 gA��u�exp�− gA�u�� .

�44�

Here, the contribution of the top and bottom parts of the
perimeter is modeled after Eq. �36�. It is proportional to the
length of such parts 	w and the coefficient B. The contribu-
tion of the side walls of the break, of length �T, is written
differently. Indeed, Ruzin’s argument42 suggests that they
give no contribution at all. In fact, we found it necessary to
include a correction albeit with a smaller exponent D=0.5.
We have no other justification for this exponent except that it
provides a good fit to the numerical P�u�, see below. The
explicit formula for P�u� can be derived from Eqs. �42�–�44�
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FIG. 9. �Color online� Numerical results for P�u� for finite cur-
rent, uI=20, shown on �a� linear and �b� logarithmic scale �thin
line�. The small fluctuations are of statistical origin. The fitting
formula �44� with uM =12.247, B=0.9, C=0.75, and D=0.5 is rep-
resented by the thick line.
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FIG. 10. �Color online� The PDF of the logarithm of the total
resistance R. The values of uI are indicated next to each curve. The
simulation parameters are the same as in Fig. 2. The smooth curves
are obtained using the PDF algorithm, the markers are from the
shortest-path simulations.

NUMERICAL STUDIES OF VARIABLE-RANGE HOPPING… PHYSICAL REVIEW B 80, 155435 �2009�

155435-7



by the straightforward differentiation with respect to u. How-
ever, it is cumbersome and we do not write it here. Equation
�44� applies for u−uI�1 and uI�uM. It refines the corre-
sponding expression for P�u� in Ref. 18, where the first �sub-
leading� exponential term was not included. The Ohmic and
non-Ohmic formulas, Eqs. �36� and �44�, match at u−uI	1.

Equation �44� predicts that P�u� decays as a Gaussian at
uM �u�uI and as an exponential of the exponential at
u�uI. In between, it exhibits a narrow peak of width
�u	 ln�uM

2 /uI� near the non-Ohmic threshold u=uI. For pa-
rameters chosen in Fig. 9, this peak is so pronounced that it
already dwarfs the “Ohmic” maximum at u=umax. The rea-
son for its appearance is similar to that discussed in a three-
dimensional case.25 This narrow peak is due to so-called
“soft” links that used to have resistances u�uI in the Ohmic
regime. Such links are similar to forward-biased diodes: their
conductance increases exponentially with the electrochemi-
cal potential drop �. When a finite current is made to flow
across the wire, such links self-generate � large enough to
push their resistance back to an immediate vicinity of the
non-Ohmic threshold u�uI.

The soft links are realized when the energies at their end
points satisfy a certain inequality, which can be derived from
Eq. �18� or looked up in Table I of Ref. 23. Therefore, not all
links are soft. There also “hard” links, which are similar to
reverse-biased diodes, whose resistance does not change
much with �. These links are never included in the optimal
path because they are simply not able to support the neces-
sary current I. The peculiar shape of P�u� that follows from
these arguments is nicely confirmed by simulations, which
we now briefly describe.

The simulation procedure in the non-Ohmic regime is
practically identical to the Ohmic case with one exception:
we have to put more than two energy sites at each lattice
point x. The reason for this is that for high currents �and,
therefore, high voltages�, as the electron moves through the
sample, it hops onto LS with lower energies, see Fig. 6. The
addition of extra LS is done to ensure that there are LS for
the electron to hop onto, otherwise the path would not be
found. We also have to increase the range of the energies on
the electrode for exactly the same reason. The simulation
was conducted at uI=35, 30, 25, and 20. Two values of uM
are used: 12.247 �same as above� and 20 �obtained by adjust-
ing the temperature but keeping g=1 /3 the same�. The fit of
the numerical P�u� to Eq. �44� for uM =12.247 can be seen in
Fig. 9 and it is quite good at all but very small u �which are
irrelevant, see the note above�.

C. Distribution of the net resistance

Besides studying the distribution of individual hops, we
also investigated the statistics of the net resistance R. In Fig.
10, we present the a sequence of four PDF’s of
U ln�R /R0� obtained from our shortest-path simulations.
From one curve to the next the current increases by the same
factor of exp�5�. A qualitative difference from the PDF for
the Ohmic case �Fig. 2� is immediately apparent. The Ohmic
PDF is skewed to the right, toward the large resistances. In
contrast, the non-Ohmic curves are skewed the opposite way.

This difference is due to the response of P�u� �the PDF of
individual links� to the rise in current. In both Ohmic and
non-Ohmic regimes the net resistance of the system is deter-
mined by the largest breaks. But in the non-Ohmic case there
is almost a hard cutoff �uI on the largest possible u �Fig. 9�.
In other words, breaks with u�uI are effectively
eliminated,18 making the large-resistance side of the PDFs of
ln�R /R0��uI drop sharply as well.

Another result of removing the highly resistant links is the
PDF’s approach to the Gaussian shape. By reducing the
spread of the link resistances, it brings the system closer to
the conditions at which the central-limit theorem is obeyed.
This can be seen in Fig. 10, where the curves become nar-
rower and more Gaussian at lower uI.

Also plotted in Fig. 10 are PDFs obtained by an approxi-
mate but much faster method, which utilizes our analytical
formulas for P�u�. We call this the PDF-algorithm. The idea
is as follows.11 The resistance of the system is given by the
sum over all links,

R = R0�
i=1

Nu

eui. �45�

Under the assumption that the link resistances are indepen-
dent random variables, each with the same PDF P�u�, it can
be shown that

PU�U� =
1

2�
� exp�U − iteU�G�t�dt , �46�

G�t� = exp�L� ��u��exp�iteu� − 1�du� . �47�

This is equivalent to the formulas given by RR in Refs. 38
and 11. For convenience of the reader, we include a quick
derivation. For independent variables, the cumulants of the
sum are equal to the sum of the cumulants.39 To calculate the
latter we notice that the number of breaks of size �u ,u+du�
has the average value dN�u�=L��u�du. The actual number is
random and has the Poisson distribution. Therefore, its con-
tribution to nth cumulant of R /R0 is enudN. The total cumu-
lant is

V

I0+dII0 I

V0+dV

V0

FIG. 11. �Color online� A sketch of V-I curves for an array of
different wires. The continuity Eq. �49� follows from the conserva-
tion of the number of curves piercing the differential area element
bounded by the dashed lines.
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�n = L� ��u�enudu . �48�

Reconstructing the characteristic function G�t� from the cu-
mulants in a standard way,39 we obtain Eq. �47�. Taking its
Fourier transform and making the change in variable from R
to U, we recover Eq. �46�.

Certainly, the resistances of the links are not truly uncor-
related; however, since R is dominated by the largest breaks,
which are rare and well-separated, this should be a good
approximation. Note that in Ref. 37, an attempt was made to
include correlations between adjacent links. As mentioned
above, it does not compare well with our simulations.

In practice, even a numerical integration of the strongly
oscillating functions in Eqs. �46� and �47� is difficult. We
found it easier to directly implement Eq. �39� instead. To this
end we draw ui from the distribution P�u� using a Monte
Carlo sampling �the usual acceptance-rejection algorithm�.
After Nu �Eq. �41�� of such resistances are generated, the
total resistance of the wire is obtained by summing them.
Figure 10 illustrates that the PDFs obtained from the
shortest-path simulations and from the PDF-algorithm are in
a good agreement. The curves produced by the latter are
much smoother because we could apply it to a larger number
of disorder realizations: 105.

V. CONDUCTANCE-VOLTAGE CHARACTERISTICS

Having studied the statistics of individual hops that con-
tribute to the 1D transport, we can now move to the analysis
of macroscopic transport properties. In experiment, such
transport properties are measured either as a function of cur-
rent or as a function of voltage. In the former case, the en-
semble averaging gives the average resistance �R�; in the
latter—the average conductance �G�. If a large number of
nominally identical wires is available simultaneously, this
can be done in a single measurement, connecting them, re-
spectively, in series and in parallel.17 Otherwise, one can try
to create the members of an ensemble one by one by varying
gate voltage or other parameters of a single wire.31

Since our shortest-path algorithm is formulated at a con-
stant current �i.e., constant uI�, one may naively think that it
is able to provide only the distribution of resistances. This is
not so. Let us show that the PDFs of conductances and re-
sistances are uniquely related even in the non-Ohmic regime.

Denote the PDF of having a given total voltage V at a
fixed current I by PV�V � I� and the PDF of having a given
current I at a fixed total V by PI�I �V�. By inspecting the V-I
curves sketched in Fig. 11, we can write down the following
continuity equation:

�

�I
PV�V�I� +

�

�V
PI�I�V� = 0. �49�

Integrating with respect to voltage, we get

PI�I�V� = −
�

�I
�

0

V

PV�V��I�dV�. �50�

As an application, let us show how the average conductance
GV at a given fixed voltage V,

GV = �
0

�

PI�I�V�
dI

R
, R =

V

I
, �51�

can be calculated.
In view of Eq. �50�, GV can also be written as

GV = − �
0

� IdI

V

�

�I
�

0

V

PV�V��I�dV�. �52�

We integrate this by parts and change the notation for the
measure in the second integral from PV�V� � I�dV� to
PR�R� �uI�dR�. We arrive at the formula

GV

R0
−1 =

T

V
�

−�

� duI

euI
�

0

�

�
VeuI

T
−

R�

R0
�PR�R��uI�dR�, �53�

for the desired average conductance at a fixed voltage. It is
easy to see that in the Ohmic limit, V→0, Eq. �53� coincides
with the average conductance at a fixed current,
�PR�R� ���dR� /R�, as expected.

To evaluate GV as a function of V, one needs to know
PR�R� �uI�. We obtained it by the following procedure. We
divided the interval of V we are interested in into a number
of bins. We took an interval of uI from 5 to about uI=3uM
and in turn divided it into equidistant steps uI�j�, 1� j�NI
=1000, spaced by �uI. For each uI�j� we generated Nsam
=200 samples, i.e., sets of Nu individual u’s, drawn from the
distribution P�u� using the acceptance-rejection algorithm.
We converted the integrals in Eq. �53� into discrete sums,

GV

R0
−1 =

�uI

VNsam
�
j=1

NI T

euI�j� �
i=1

Nsam

�
VeuI�j�

T
−

Ri�j�
R0

� , �54�

where Ri�j� is the total resistance of ith set for a given j, and
then evaluated them numerically.

The simulations were done for uM =5, 7.5, 10, 12.5, and
15. The control parameter was T while all other values—a,
g, L, and Nu—remained the same. Later, we realized that in
the non-Ohmic regime the number of hops Nu gradually in-
creased with current. Equation �41� remains accurate only for
uI�uM. Therefore, only uI�uM points were included when
plotting the five curves in Fig. 3.

Alternatively, GV can be reduced to a numerical quadra-
ture, which this time contains no oscillating integrands. This
is possible because GV is dominated by large conductances,
for which the saddle-point approximation in Eq. �46� is le-
gitimate. After a straightforward derivation, one obtains

GV

R0
−1 =

T

V
�

−�

� duI

euI
�

0

�

�
VeuI

T
− J1� 	� J2

2�
exp�J1t + J0�dt ,

�55�

Jn = Nu�
0

�

P�u��exp�nu − teu� − �n,0�du , �56�

where n=0,1 ,2, and �ij is the Kronecker symbol. All these
integrals are rapidly converging, so that their numerical
evaluation should cause no difficulty. However, we deemed
the quality of the curves shown in Fig. 3 sufficient �these
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curves were obtained from Eq. �54��. Therefore, we did not
pursue this alternative method.

VI. DISCUSSION

At this point, let us recapitulate our findings. To the best
of our knowledge we presented the first reliable calculation
of the statistics of resistances in 1D VRH network, both in
Ohmic and non-Ohmic regimes. Comparing with the previ-
ous theoretical work, we showed the importance of the cor-
rection to the PDF P�u� proposed in Ref. 36. We demon-
strated that without this ‘‘subleading’’ term, the conductance
could be significantly overestimated, see Fig. 1. Figure 6
further illustrates the importance of such corrections by
showing that there are no obvious diamondlike or hexagonal
voids in the energy-position space invoked in the derivations
of the leading asymptotic behavior.11,18

Next, our calculations have verified the earlier analytical
predictions18 that large breaks are progressively eliminated at
higher voltage, and that the PDF of resistances becomes
more narrow, see Fig. 10. This disappearance of highly re-
sistive hops equalizes different samples, making the averages
of parallel and series setups of the wires approach the same
value.

Let us now turn to experiments. Unfortunately, we could
not find a clear evidence of the predicted behavior in pub-
lished literature. A dedicated experiment to probe mesos-
copic conductance fluctuations in non-Ohmic regime is de-
sired as it was not on the agenda in previous studies of 1D
VRH. At least two other caveats must also be kept in mind.
First, most of “1D” electron systems studied experimentally
were not truly one-dimensional. They either consisted of
many parallel chains4,40 or had multiple subbands5,17,41 or
were bulk samples with a large aspect ratio.30,31 Such sys-
tems may behave as effectively 1D but only at low enough T.
Finally, our model of disorder where LS are treated as points
in the energy-position space may or may not be relevant for

some of these experiments �see more below�.
Turning to some specific examples, we consider first the

measurements done on polydiacetylene single crystals,40

which are quasi-1D materials. The Ohmic transport is con-
sistent with 1D VRH behavior, showing a crossover from a
simple exponential at relatively high temperatures,
ln G�−�h /2T, to a stretched exponential ln G�−��l /T��

with �=0.5–0.75 at low T. Just as in our simulations, there
is a substantial difference between �h and �l. For instance, in
sample S1 �h=320 K and �l=2570 K�8�h. In the same
sample at high electric fields Eq. �4� is observed, with
8T0 /a=0.049 eV /nm �in our notations�. Assuming that
T0��h, this gives a reasonable estimate of the localization
length a=4.3 nm. At modest fields, the transport data were
fitted to Eq. �3� and Lc was extracted. It was seen to have the
same temperature dependence Lc�T−0.5, as in our
simulations. Moreover, the numerical value of Lc is
close to what we find. For example, Lc=32.5 nm at
T=25 K in the experiments,40 which can be compared to
Lc	1.9a�2T0 /T=40 nm that we find, cf. Figure 4.

Next, let us consider another experiment, which was done
on arrays of GaAs quantum wires.17 The dependence of G on
F and T that we have calculated here is in a reasonable
agreement with some of those experimental results but some
strong deviations are also apparent. For example, in the
simulations the range of activated behavior in the Ohmic
regime spans at best two decades in G. In the experiment, it
is much wider �three decades�, and occupies most of the
temperature range T�0.2 K where G was reported. We
were able to fit the experimental G�0,T� only by imposing a
rather strong power-law dependence of the prefactor:
G0�T2.5. From such a fit we obtained T0=6.2 K �in our
notations�.

In the non-Ohmic regime, the initial rise of G with F is
again exponential over approximately one decade, see Fig.
12. However, the behavior of parameter Lc in this exponen-
tial law was deemed to be surprising in Ref. 17. Therefore,
let us discuss it. Physically, Lc is the distance between “criti-
cal hops” in a sample, i.e., those highly resistive links that
generate the dominant portion of the total voltage. In a typi-
cal sample, length Lc has to be much larger than the average
hop length uMa. In fact, at low T one would naively expect
Lc to be of the order of the sample length L. This is because
in a typical sample all the voltage drops on a single break. At
higher T, where the activated transport is observed, the volt-
age is shared by many breaks,11 and so Lc is supposed to
decrease exponentially. However, this is not what was ob-
served. At low T, two out of three samples measured in Ref.
17 had Lc�L /50, while Lc of the third was about L /10. As T
was increasing, Lc was decreasing but rather slowly, perhaps,
as T−1/2.

In light of our findings, this behavior of Lc is not surpris-
ing. The above reasoning does not take into account that the
measurements were done not on a single wire but on several
hundreds of them, connected in parallel. It is logical to as-
sume that some wires conducted much better than others
because they happened to have no breaks. These wires could
short out the wires which were poor conductors, reducing the
net Lc down to the typical hopping length.

We now demonstrate explicitly that Lc extracted from our
model has numerical values and functional behavior similar
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FIG. 12. �Color online� Conductance of sample 1 of Ref. 17 as
a function of the scaled electric field Fa /T0 �markers�. Here
T0=6.2 K is determined from the best fit of Eq. �6� to the Ohmic
conductance �not shown� and a=0.4 �m. Temperature �in K� is
indicated next to each data set. The best fits to Eq. �3� are shown by
the lines. The rightmost curve is Eq. �4�. The prefactor G0 is chosen
such that the relation between Eq. �3� and the uppermost data trace
�corresponding to uM �5� is similar to that in Fig. 3.
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to what was measured experimentally. Our Lc, which was
found by fitting the low-voltage part of G�F� curves in Fig. 3
to Eq. �3� is plotted in Fig. 4. The intervals of T0 /T are
different in our simulation and the experiment; however,
there is a small overlap. For our leftmost point, T0 /T=12.5
we have L /Lc�30, similar to the numbers quoted above.

The problem arises when we consider the high-field be-
havior reported in Ref. 17. Experimental G�F ,T� curves tend
to approach a common T-independent limit, as in our calcu-
lations, Fig. 3. However, this limit is strongly underestimated
by our Eq. �4�, see Fig. 12. While we do not know the origin
of this discrepancy, it is possible that the different behavior
seen in the two experiments is just another example of a
dilemma, which has a long history in the VRH literature.
Previously, it was discussed mostly in the context of bulk
materials where majority of experiments have been done so
far. However, it is tempting to make a comparison with our
1D case because the VRH exponent of the Efros-Shklovskii
law in any dimension nominally coincides with the 1D Mott
law exponent �=1 /2.

The essence of the dilemma is as follows. There is a num-
ber of systems where non-Ohmic behavior does follow Eqs.
�3� and �4� that we have observed in our simulations. How-
ever, this is usually the case when parameter � in Eq. �1� is
large, say, tens or hundreds of K. Very different and still
poorly understood behavior occurs when T0 is relatively
small �according to one study,42 when �T0 /T�12�. The
high-field nonlinearities in this second group are much stron-
ger. In the extreme cases, the I-V characteristic was deter-
mined to be S-shaped,43,44 which led to hysteretic conductiv-
ity jumps by orders of magnitude43,45 and circuit
oscillations.44,46 Interestingly, in systems that show conduc-
tivity jumps the Ohmic conductance shows a simple activa-
tion rather than VRH behavior.43,45

It has become common41,42,44,45,47–52 to attribute strong
nonlinearity and S-shaped I-V to electron overheating. It is
assumed that G is the function of the electron temperature
Te, which can be much higher than the ambient temperature
T. A phenomenological equation is postulated,

Q̇ = GF2 = ��Te
� − T� � , �57�

where � and � are adjustable constants. �Usually, 4���8.�
This equation is supposed to represent the balance between
the Joule heat delivered into electron system from the exter-
nal field and the heat transferred from electrons to phonons.
Surprisingly, this equation has been shown to provide an
accurate description of some VRH systems, including the
one we are trying to make comparison to.17,41

By itself, the idea of hot electrons is not objectionable.
Actually, our Eq. �4� can be viewed as the 1D Mott law with
the electron temperature Te	Fa �similar to Refs. 28 and 53�.

The difficulty is that the required Te is unusually large. In-
deed, let us define the length Le-ph=Te /F. It has the physical
meaning of a characteristic distance over which an electron
must be accelerated by the external field to gain the extra
energy Te�T. In our model, where LS are treated as points,
the largest achievable Le-ph is on the order of a. Electrons
cannot propagate farther without suffering an exponential de-
cay. Yet to get a stronger I−V nonlinearity than predicted by
our Eq. �4�, Le-ph must exceed a. For example, to reproduce
the high-field part of the data shown in Fig. 12, we need
perhaps Le-ph	10a.

In principle, Le-ph�a is possible if the disordered system
is a granular metal or equivalently, an array of random-sized
quantum dots. In this case the upper bound on Le-ph is pre-
sumably set by the size of metallic grains, while the expo-
nential decay length a is much smaller, being suppressed by
weak tunneling between the grains. The granular-metal
model can also explain a wide range of the activated Ohmic
behavior as a manifestation of the Coulomb blockade. Fi-
nally, it has been suggested43 that the conductivity jumps
may be related to lifting of the Coulomb blockade by collec-
tive depinning. Transport in a 1D version of this model was
recently studied in a paper co-authored by one of us54 but the
case of extremely strong fields was not considered. It re-
mains to be seen whether this model can yield a better agree-
ment with the experiments.17

It has been frequently speculated that the overheating is
driven by the electron interactions, which we did not address
here. The simplest way to introduce some interaction effects
into the existing formalism is to consider larger dielectric
constant ��1. The importance of such effects requires fur-
ther study.

Finally, as mentioned above, most of electron systems
studied should behave as effectively 1D only at low enough
T. The dimensional crossover as a function of temperature in
a strip geometry has been studied by RR in Ref. 55. It would
be interesting to investigate the electric-field counterpart of
this crossover.

In conclusion, we showed that numerical simulations such
as those we carry out in this paper can serve as a valuable
tool in studying VRH transport. We hope that our results
would stimulate further experimental work on both “conven-
tional” �semiconductor wires� and novel �nanotubes, nanofi-
bers, and graphene ribbons� 1D and quasi-1D-materials.
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